久久久久久人妻精品一区,国产精品一区二区按摩,欧美1区2区3区免费,国产精品福利tumblr

您好,歡迎進入安科瑞電子商務(上海)有限公司網站!
全國服務熱線:18717707094
安科瑞電子商務(上海)有限公司
產品搜索
PRODUCT SEARCH
產品分類
PRODUCT CLASSIFICATION
您現(xiàn)在的位置:首頁 > 技術文章 > 【解決方案】電動汽車的有序充電管理及其對配網的影響分析

【解決方案】電動汽車的有序充電管理及其對配網的影響分析

瀏覽次數(shù):999更新時間:2023-11-14

 

未曉妃

安科瑞電氣股份有限公司 上海嘉定 201801

   電動汽車以無序充電方式接入配電網時與網內基礎用電負荷疊加,會形成峰上加峰的現(xiàn)象,不利于配電網的穩(wěn)定運行。針對上述問題,首先對私家車充電負荷進行建模,采用蒙特卡羅抽樣模擬電動汽車無序行為下的充電負荷曲線。然后提出一種新型的多時段動態(tài)充電價格機制,引導車主有序充電,并以配電網負荷波動比較小為目標函數(shù),優(yōu)化電動汽車充電行為。比較后在IEEEE3節(jié)點配電網中,分別分析有序和無序充電負荷并網時電動汽車充電費用、配電網電壓偏移率及網損,結果表明所提策略可有效兼顧用戶利益和配電網的穩(wěn)定運行。

1私家車無序模式充電模型

  本文從以下4個方面構建電動汽車的充電模型。a?電動汽車電池特性本文選用鋰電池為研究對象。與普通汽車相同,不同類型私家車電池容量有差異。

  式中fQ為私家車鋰電池容量的概率密度;x表示該時刻的電池容量大小,一般取值為20-30kwh。鋰電池充電變化過程如圖1所示。由于充電起始過程和結束過程的時間非常短暫,可以近似地認為鋰電池充電是恒功率充電。b?車主日行駛里程本文引用美國交通部汽車日出行數(shù)據(jù)進行分析

計算[13],可知電動汽車車主每日用車行駛里程數(shù)的概率密度函數(shù)為

式中:fD為車主日行駛里程的概率密度函數(shù);μD為期望值;σD為標準差。c?車主比較后歸程時刻假設車主每日結束行程時刻即為電動汽車每日開始充電時刻,比較后歸程概率密度函數(shù)為

式中:fs為車主比較后規(guī)程的概率密度函數(shù);w為回家時刻;μs為期望值;σs為標準差。d?車主離家時間假設車主每日用車期間只可放電不可充電,出行開始時刻的概率密度函數(shù)為

式中:fe為車主啟程離家的概率密度函數(shù);v為離家時刻。結合用戶出行數(shù)據(jù)及電動汽車充電模型利用蒙特卡洛算法,得到500輛電動汽車的24h無序充電負荷曲線,如圖2所示。

2多時段動態(tài)電價下電動汽車有序充電模型

2.1多時段動態(tài)電價區(qū)間劃分

  傳統(tǒng)的分時電價一旦制定后其區(qū)間不再變化,但居民的用電行為會隨著季節(jié)變化、地域不同和個人舒適度而改變,與原分時電價的價格區(qū)間范圍有偏差,產生負荷和電價的峰谷不匹配的現(xiàn)象。而電動汽車的充電行為在時間上有很大隨機性,導致實時電價的制定考慮因素十分復雜。因此本文根據(jù)短期負荷預測為基礎提出一種新型的多時段動態(tài)電價策略。目前為止,隸屬度函數(shù)是對傳統(tǒng)用電價格進行劃分的比較成熟且通用性比較廣的方法。以表1某地區(qū)分時電價為例,首先基于模糊數(shù)學的理論,可將每個時間段認為是一個獨立的模糊集合,然后利用隸屬度函數(shù)構建時段內每時刻對應的隸屬度,并根據(jù)隸屬度值將其劃分到對應的時間段[14]。再將短期預測的基礎負荷劃分成多時段,根據(jù)每時段對應的負荷值計算相對應的電價。

式中:Cmax和Cmin分別為分時電價的峰值與谷值;C∗為每時段負荷在價格區(qū)間上的映射。

式中:Ci為基準。

2.2電動汽車有序充電策略

  電動汽車聚合商是專門針對電動汽車充電進行資源整合的參與者,其部署的智能充電樁可提供常規(guī)充電模式和充電優(yōu)化模式。常規(guī)充電模式可將電動汽車的電池充至期望電量值,而優(yōu)化模式則需要根據(jù)車主個人用電需求輸入結束充電時刻及結束時刻的充電期望值。車輛接入后,充電樁將獲取該車信息,將輸入值及車電池的剩余電量反饋到系統(tǒng)調度中間,對收集的數(shù)據(jù)進行在線智能計算,形成電動汽車的充電計劃。

2.3目標函數(shù)

  本文以網內負荷波動比較小為目標函數(shù)。

式中:F為目標函數(shù);N為谷時段數(shù)目;Pi為第i個時段配電網的基礎負荷值。

2.4約束條件

小值和比較大值。

  Bu充電時段T約束Ts≤T≤Te(12)式中:Ts為車主每日充電開始時刻;Te為當天充電結束時刻。c?總電量S約束本文優(yōu)化中不計電池損耗,假設電池容量為恒定值。

式中:K為充電的電動汽車數(shù)目;Tchi為第i輛車總充電時間。

2.5算法求解

  傳統(tǒng)的遺傳算法是一種起源于生物進化規(guī)律演變的尋優(yōu)算法。從任意初始種群開始,通過選擇、交叉、變異等環(huán)節(jié),產生一些對環(huán)境適應度高的個體并進入搜索空間中更好的區(qū)域,不斷繁衍進化,比較終得到比較大適應度的個體作為比較優(yōu)解輸出。但由于進化過程中交叉概率參數(shù)及變異概率參數(shù)為定值,忽略了進化過程中種群的自適應特性,存在過早收斂的缺陷。且算法沒有保留精英機制,適應度高的個體可能在進化中丟失好的*因。為了解決以上問題,本文采用自適應交叉概率Kc和自適應變異概率Km以及精英保留機制進行優(yōu)化求解[15]。自適應交叉概率Kc和自適應變異概率Km公式如下:

  式中:K1為基礎交叉概率;fmax為個體比較大適應度;fav為個體適應度值的平均值;fl為每相鄰交叉?zhèn)€體中較大的適應度。

  式中:K2為基礎變異概率;fi為第I代進化的閾值,公式如下:

 

  式中:fiI為第i個個體;Keep=1,則精英保留,Keep=0,則不保留。優(yōu)化過程如圖4。

3算例仿真與分析

3.1仿真場景設定

  本文仿真過程選擇在IEEE33節(jié)點配電網中進行,其拓撲如圖5所示。假設節(jié)點1為平衡節(jié)點,即電源接入節(jié)點,余下32個節(jié)點全部為PQ節(jié)點。假設整個配電網系統(tǒng)中含基礎負荷以及1500輛電動汽車,車群被均勻分配到節(jié)點19,23和26中。以私家車比亞迪E1車型作為研究對象,規(guī)定每輛電動汽車的動力電池規(guī)格相同,參數(shù)為:220V,16A慢充模式,限制容量為35KWH,3.52KWH恒功率充電,充電效率為0.82,轉換效率為0.90

3.2對用電負荷的分析

  電動汽車以不同方式充電的負荷曲線及配電網總負荷曲線如圖6、圖7所示。由圖6和圖7可知,通過動態(tài)價格的引導,電動汽車充電行為趨于有序化,車主對充電時間段的選擇逐漸向夜間轉移,負荷峰值水平大幅度下降,說明新型電價的提出可以使車主的用電行為不再大面積集中,系統(tǒng)總用電負荷曲線相對變得平緩,有削峰填谷的效果。

  由表2可知,無序充電車主日繳納電費為21880.8元,基于多時段動態(tài)電價的有序充電日繳費為17248.80元,比無序充電費用降低了21.17%。因此新電價機制的提出可有效降低車主充電成本。

3.3對配電網影響分析

  將IEEE33節(jié)點配電網模型的節(jié)點負荷參數(shù)和優(yōu)化后的有序充電負荷數(shù)據(jù)導入MATLAB軟件語言編程,對比以下3種場景下的配電網電壓偏移及網損。場景1:配電網內未接入電動汽車負荷。場景2:配電網內接入無序充電負荷。場景3:配電網內接入有序充電負荷。圖8表示部分時段下3種用電方式的網損率。可見18.00-24.00由于無序充電負荷的接入使得網內網損明顯升高。原因是車主歸程后的無序充電行為與用戶基礎用電行為的一致性導致網內用電功率激增。09.00-21.00時,對比接入無序充電負荷和有序充電負荷,后者可有效降低配電網網損,尤其在電價高峰時段21.00網損率下降了2.77%,效果比較顯著。說明多時段分時電價的提出引導車主有序充電對調節(jié)配電網網損具有一定效果。

  由圖9可知,場景1配電網未接入充電負荷時的電壓偏移都控制在±7%以內,縱橫對比沒有發(fā)現(xiàn)嚴重的電壓偏移現(xiàn)象,但是節(jié)點18和19在20.00-21.00時間段上有局部節(jié)點處在越限邊界。由圖10可知,場景2中配電網內接入無序充電負荷時,節(jié)點13-19和28-33在晚間出現(xiàn)電壓越限情況,原因是無序充電負荷的高峰期恰巧與網內基礎負荷用電的高峰期時段相疊。

  圖11表示場景3下配電網內接入有序充電負荷時各個節(jié)點電壓的偏移情況。與圖9和圖10對比可知,有序充電負荷的接入使局部節(jié)點越限現(xiàn)象得到*解,偏移的電壓回歸到正常標準范圍內。說明所提出的新型動態(tài)分時電價可以通過對電動汽車進行充電有序化管理來改*配電網電壓偏移現(xiàn)象。

由于大量負荷突然接入使各節(jié)點電壓發(fā)生偏移現(xiàn)象,因此對比較大負載量時刻(21.00)各節(jié)點電壓偏移情況進行對比更有意義,結果如圖12所示。

  由圖12可知,未接入無序負荷時網內各節(jié)點的電壓偏移都控制在±7%范圍以內,電壓無越限行為。當無序充電負荷并網后,一部分節(jié)點電壓發(fā)生顯著偏移,且偏移量均超過規(guī)定標準范圍。而經過多時段動態(tài)電價策略調控的有序充電行為接入配電網后,網內各節(jié)點電壓值還原到標準范圍以內,其中變化比較顯著的18號節(jié)點電壓標幺值由0.9467調整到0.9828,電壓偏移率修正了3.61%。

4安科瑞充電樁收費運營云平臺

4.1概述

  AcrelCloud-9000安科瑞充電柱收費運營云平臺系統(tǒng)通過物聯(lián)網技術對接入系統(tǒng)的電動電動自行車充電站以及各個充電整法行不間斷地數(shù)據(jù)采集和監(jiān)控,實時監(jiān)控充電樁運行狀態(tài),進行充電服務、支付管理,交易結算,資要管理、電能管理,明細查詢等。同時對充電機過溫保護、漏電、充電機輸入/輸出過壓,欠壓,絕緣低各類故障進行預警;充電樁支持以太網、4G或WIFI等方式接入互聯(lián)網,用戶通過微信、支付寶,云閃付掃碼充電。

4.2應用場所

  適用于民用建筑、一般工業(yè)建筑、居住小區(qū)、實業(yè)單位、商業(yè)綜合體、學校、園區(qū)等充電樁模式的充電基礎設施設計。

4.3系統(tǒng)結構

4.3.1系統(tǒng)分為四層:

1)即數(shù)據(jù)采集層、網絡傳輸層、數(shù)據(jù)中間層和客戶端層。

2)數(shù)據(jù)采集層:包括電瓶車智能充電樁通訊協(xié)議為標準modbus-rtu。電瓶車智能充電樁用于采集充電回路的電力參數(shù),并進行電能計量和保護。

3)網絡傳輸層:通過4G網絡將數(shù)據(jù)上傳至搭建好的數(shù)據(jù)庫服務器。

4)數(shù)據(jù)中間層:包含應用服務器和數(shù)據(jù)服務器,應用服務器部署數(shù)據(jù)采集服務、WEB網站,數(shù)據(jù)服務器部署實時數(shù)據(jù)庫、歷史數(shù)據(jù)庫、基礎數(shù)據(jù)庫。

5)應客戶端層:系統(tǒng)管理員可在瀏覽器中訪問電瓶車充電樁收費平臺。終端充電用戶通過刷卡掃碼的方式啟動充電。

  小區(qū)充電平臺功能主要涵蓋充電設施智能化大屏、實時監(jiān)控、交易管理、故障管理、統(tǒng)計分析、基礎數(shù)據(jù)管理等功能,同時為運維人員提供運維APP,充電用戶提供充電小程序。

4.4安科瑞充電樁云平臺系統(tǒng)功能

4.4.1智能化大屏

  智能化大屏展示站點分布情況,對設備狀態(tài)、設備使用率、充電次數(shù)、充電時長、充電金額、充電度數(shù)、充電樁故障等進行統(tǒng)計顯示,同時可查看每個站點的站點信息、充電樁列表、充電記錄、收益、能耗、故障記錄等。統(tǒng)一管理小區(qū)充電樁,查看設備使用率,合理分配資源。

4.4.2.實時監(jiān)控

  實時監(jiān)視充電設施運行狀況,主要包括充電樁運行狀態(tài)、回路狀態(tài)、充電過程中的充電電量、充電電壓/電流,充電樁告警信息等。

4.4.3交易管理

平臺管理人員可管理充電用戶賬戶,對其進行賬戶進行充值、退款、凍結、注銷等操作,可查看小區(qū)用戶每日的充電交易詳細信息。

4.4.4故障管理

設備自動上報故障信息,平臺管理人員可通過平臺查看故障信息并進行派發(fā)處理,同時運維人員可通過運維APP收取故障推送,運維人員在運維工作完成后將結果上報。充電用戶也可通過充電小程序反饋現(xiàn)場問題。

4.4.5統(tǒng)計分析

通過系統(tǒng)平臺,從充電站點、充電設施、、充電時間、充電方式等不同角度,查詢充電交易統(tǒng)計信息、能耗統(tǒng)計信息等。

4.4.6基礎數(shù)據(jù)管理

在系統(tǒng)平臺建立運營商戶,運營商可建立和管理其運營所需站點和充電設施,維護充電設施信息、價格策略、折扣、優(yōu)惠活動,同時可管理在線卡用戶充值、凍結和解綁。

4.4.7運維APP

面向運維人員使用,可以對站點和充電樁進行管理、能夠進行故障閉環(huán)處理、查詢流量卡使用情況、查詢充電\充值情況,進行遠程參數(shù)設置,同時可接收故障推送。

4.4.8充電小程序

面向充電用戶使用,可查看附近空閑設備,主要包含掃碼充電、賬戶充值,充電卡綁定、交易查詢、故障申訴等功能。

4.5系統(tǒng)硬件配置

 

 

 

5結語

  本文基于分時電價與短期負荷預測提出了一種新型多時段動態(tài)充電價格機制,引導車主規(guī)劃用車安排,使充電行為由無序變?yōu)橛行?。建立以配電網內負荷波動比較小為目標函數(shù),利用MATLAB軟件進行算法編程,結果表明所提出的多時段動態(tài)電價策略可減小網內的負荷波動,有明顯的削峰填谷作用,為車主減少21.17%的充電成本。此外還有效降低了21.00用電高峰期2.77%的網損率并修正18號節(jié)點3.61%的電壓偏移率,實現(xiàn)了保證車主充電利益與提高配電網運行安全的并存。

 

 

Contact Us
  • 聯(lián)系QQ:2880263320
  • 聯(lián)系郵箱:2881392118@qq.com
  • 傳真:18717707094
  • 聯(lián)系地址:上海市嘉定區(qū)馬陸鎮(zhèn)育綠路253號安科瑞

掃一掃  微信咨詢

©2024 安科瑞電子商務(上海)有限公司 版權所有  備案號:滬ICP備18001305號-12  技術支持:智慧城市網    sitemap.xml    總訪問量:254448 管理登陸

河曲县| 赣榆县| 宜良县| 新郑市| 厦门市| 凤台县| 土默特左旗| 合川市| 台山市| 洞口县| 宁蒗| 五寨县| 青田县| 平利县| 任丘市| 库尔勒市| 盐城市| 调兵山市| 锦屏县| 宕昌县| 东丰县| 隆昌县| 汶上县| 积石山| 井陉县| 宝坻区| 江达县| 子洲县| 达州市| 凤庆县| 巴塘县| 邢台市| 垦利县| 平陆县| 新野县| 依安县| 鹤壁市| 镇宁| 武夷山市| 溆浦县| 合水县|